da Vikas Agarwal, Narayan Naik Y.. Del 2002. Gli hedge fund sono noti per esibire non lineari esposizioni opzione simile per classi di attività standard e quindi il tradizionale modello di fattore lineare fornisce un aiuto limitato a catturare i loro compromessi di rischio-rendimento. Abbiamo risolto questo problema aumentando il modello tradizionale con fattori di rischio basati su opzioni. Gli hedge fund O. sono noti per esibire non lineari esposizioni opzione simile per classi di attività standard e quindi il tradizionale modello di fattore lineare fornisce un aiuto limitato a catturare i loro compromessi di rischio-rendimento. Abbiamo risolto questo problema aumentando il modello tradizionale con fattori di rischio basati su opzioni. I nostri risultati mostrano che un gran numero di fund strategie fondo azionario orientato al payoff mostrano che assomiglia ad una posizione corta in un'opzione put sull'indice di mercato, e quindi sopportare un rischio significativo di sinistra-coda, il rischio che viene ignorato dal quadro media-varianza comunemente usato . Utilizzando un framework media-condizionale Value-at-Risk, dimostriamo la misura in cui il quadro media-varianza sottovaluta il rischio di coda. Lavorare con la sistematica sottostante Mila Getmansky, Andrew W. Lo, Igor Makarov - Journal of Financial Economics. Del 2004. I rendimenti di hedge fund e di altri investimenti alternativi sono spesso altamente serialmente correlati, in netto contrasto con i rendimenti di altri veicoli di investimento tradizionali, come portafogli long-only azionari e fondi comuni di investimento. In questo lavoro, esploriamo diverse fonti di tale correlazione seriale e s. I rendimenti di hedge fund e di altri investimenti alternativi sono spesso altamente serialmente correlati, in netto contrasto con i rendimenti di altri veicoli di investimento tradizionali, come portafogli long-only azionari e fondi comuni di investimento. In questo lavoro, esploriamo diverse fonti di tale correlazione seriale e mostrare che la spiegazione più probabile è l'esposizione illiquidità, cioè investimenti in titoli che non sono attivamente negoziate e per la quale i prezzi di mercato non sono sempre facilmente disponibili. Per i portafogli di titoli illiquidi, hanno riportato rendimenti tenderanno ad essere più agevole rispetto veri ritorni economici, che saranno sottostimare la volatilità e aumentare le misure di performance aggiustati per il rischio, come l'indice di Sharpe. Proponiamo un modello econometrico di esposizione illiquidità e sviluppare stimatori per il profilo lisciatura, nonché un indice di Sharpe levigante-adjusted. Per un campione di 908 fondi hedge contenuti nella banca dati TASS, dimostriamo che i nostri coefficienti di lisciatura stime variano notevolmente tra hedge fund categorie di stile e può essere un proxy utile per quantificare l'esposizione illiquidità. da Markus K. Brunnermeier, Stefan Nagel - Journal of Finance VOL. LIX, NO. 5 ottobre 2004. 2004. Questo documento i documenti che i fondi hedge non hanno esercitato una forza di correzione sui prezzi delle azioni durante la bolla tecnologica. Invece, sono stati pesantemente investito in titoli tecnologici. Questo non sembra essere il risultato di inconsapevolezza della bolla: Gli hedge fund catturato la ripresa, ma, riducendo il loro pos. Questo documento i documenti che i fondi hedge non hanno esercitato una forza di correzione sui prezzi delle azioni durante la bolla tecnologica. Invece, sono stati pesantemente investito in titoli tecnologici. Questo non sembra essere il risultato di inconsapevolezza della bolla: Gli hedge fund catturato la ripresa, ma, riducendo le loro posizioni in titoli che stavano per scendere, evitare gran parte della recessione. I nostri risultati mettono in dubbio la nozione mercati efficienti che gli speculatori razionali stabilizzare sempre prezzi. Essi sono coerenti con i modelli in cui gli investitori razionali possono preferire di cavalcare le bolle a causa del sentiment degli investitori prevedibile e limiti di arbitraggio. essere correlata in questo modo. In secondo luogo, alcuni hedge funds possono anche applicare strategie di trading dinamiche, che generano l'esposizione non lineare ai fattori asset class, il che implica che un modello lineare è misspecified (-Fung e Hsieh 1997-- Agarwal e Naik 2000). Abbiamo eseguito una verifica informale di dispersione e non abbiamo trovato molto non-linearità nel nostro campione di rendimenti dei fondi hedge. Nel complesso, riteniamo che il nostro semplice modello 6 Per i fondi. da Jennifer Carpenter N. - Journal of Finance. Del 2000. Questo documento risolve il problema investimento dinamico di un Risk Manager avversa compensato con una call option sulle attività che controlla. Sotto la politica ottimale manager, l'opzione finisce sia profondo o profonda out of the money. Mentre il valore patrimoniale va a zero, la volatilità va all'infinito. Tuttavia, t. Questo documento risolve il problema investimento dinamico di un Risk Manager avversa compensato con una call option sulle attività che controlla. Sotto la politica ottimale manager, l'opzione finisce sia profondo o profonda out of the money. Mentre il valore patrimoniale va a zero, la volatilità va all'infinito. Tuttavia, la compensazione opzione non strettamente portare ad una maggiore ricerca del rischio. A volte, i gestori di volatilità ottimale è meno con l'opzione di quanto lo sarebbe se fosse scambiando il proprio conto. Inoltre, dando il manager più opzioni lo spinge a ridurre la volatilità. DIRIGENTI CON CONVESSE SISTEMI DI INDENNIZZO svolgono un ruolo importante nei mercati finanziari. Questo documento risolve per la politica di investimento dinamica ottimale per un Risk Manager avversa pagato con una call option sulle attività che controlla. Il documento si concentra su come gli impatti di compensazione opzione manager appetito per il rischio, quando non riesce a coprire la posizione scelta. Da un lato, la convessità della opzione rende le vincite gestore evitano che potrebbero essere vicino al denaro. Sotto la politica ottimale, il manager di Vikas Agarwal, Narayan Naik Y., Elroy Dimson, William Goetzmann, David Hsieh, Frans De Roon, Henri Servaes - Journal of finanziaria e analisi quantitativa. Del 2000. arbitro anonimo e partecipanti alla conferenza di hedge fund presso la Duke University e problemi nel arbitro anonima e partecipanti alla conferenza hedge fund presso la Duke University e problemi in da George O. Aragona -. Journal of Financial Economics. Del 2007. Questo lavoro trova una, relazione concava positiva tra i rendimenti azionari e ri-strictions di fondi di investimento privati, e dimostra che alfa positivi precedentemente documentati possono essere interpretati come compensazione per lo svolgimento di quote di fondi liquidi. I ritorni un-Nual su fondi con disposizioni di blocco sono app. Questo lavoro trova una, relazione concava positiva tra i rendimenti azionari e ri-strictions di fondi di investimento privati, e dimostra che alfa positivi precedentemente documentati possono essere interpretati come compensazione per lo svolgimento di quote di fondi liquidi. I ritorni un-Nual su fondi con disposizioni di blocco sono circa 4 superiori a quelli per i fondi non di blocco, e le alfa dei fondi con azioni più liquide sono o negativi o insignificante. Questo documento trova anche un'associazione positiva tra restrizioni azioni e illiquidità nel patrimonio del fondo, il che suggerisce che i fondi che affrontano gli alti costi di rimborso utilizzano restrizioni per lo screening per gli investitori con esigenze di bassa liquidità. I risultati sono in linea con le teorie precedenti, che postulano che la liquidità ha un prezzo, e che le disponibilità liquide al netto è detenuto da investitori con orizzonti di investimento più lunghi. Classificazione JEL: G11 G12 di Nicolas P. B. Bollen, Jeffrey A. Busse - Journal of Finance VOL. LVI, NO. 3 giugno 2001. 2001. Gli studi esistenti di tempistica mercato dei fondi comuni analizzare rendimenti mensili e trova poche prove di capacità di temporizzazione. Abbiamo dimostrato che le prove quotidiane sono più potenti e che i fondi comuni di investimento presentare una significativa capacità di sincronizzazione più spesso nei test quotidiane che nei test mensili. Costruiamo una serie di fondo sintetico. Gli studi esistenti di tempistica mercato dei fondi comuni analizzare rendimenti mensili e trova poche prove di capacità di temporizzazione. Abbiamo dimostrato che le prove quotidiane sono più potenti e che i fondi comuni di investimento presentare una significativa capacità di sincronizzazione più spesso nei test quotidiane che nei test mensili. Costruiamo una serie di rendimenti dei fondi di sintesi al fine di controllare per i risultati spuri. I coefficienti di temporizzazione quotidiane della maggior parte dei fondi sono significativamente diversi dai loro omologhi sintetici. Questi risultati suggeriscono che i fondi comuni possono possedere più abilità tempistica di quanto precedentemente documentato. da Gaurav S. Amin, Harry M. Kat. Caratteristiche 2002Empirical di strategie di trading dinamico: il caso di Hedge Funds Questo articolo presenta alcuni nuovi risultati su un set di dati inesplorato sulla performance dei fondi hedge. I risultati indicano che i fondi speculativi seguono strategie che sono radicalmente differenti da fondi comuni di investimento, e sostengono l'affermazione che queste strategie sono altamente dinamici. L'articolo rileva cinque stili di investimento dominanti in hedge fund, che quando aggiunto a Sharpes (1992) di asset classe del modello fattore in grado di fornire un quadro integrato per l'analisi di stile sia buy-and-hold e strategie di trading dinamiche. Articolo pubblicato dalla Oxford University Press per conto della Società di Studi finanziari nella sua rivista, The Review of Financial Studies. A nostra conoscenza, questo articolo non è disponibile per il download. Per trovare se è disponibile, ci sono tre opzioni: 1. Controllare di seguito in fase di ricerca correlati se un'altra versione di questo prodotto è disponibile on-line. 2. Verificare sulla pagina web provider se è in realtà disponibile. 3. Eseguire una ricerca di un elemento simile dal titolo che sarebbe disponibile. Articolo fornito da Society for Financial Studies nel suo giornale Review of Financial Studies. Volume (Anno): 10 (1997) Edizione (mese): 2 () Pagine: Caratteristiche 275-302Empirical di strategie di trading dinamico: il caso di fondi hedge quotBecause fondi speculativi sono soggetti a scarsa regolamentazione, possono usare la loro discrezione, di ridurre o usufruire di uno shock di liquidità. Come Fung e Hsieh (1997) spettacolo, aggiungendo cinque stili di investimento dominanti utilizzati dai fondi hedge a Sharpex27s (1992) di asset modello fattoriale classe fornisce un quadro integrato per l'analisi stile di strategie di trading dinamiche. L'evidenza mostra anche che le strategie di trading dinamiche influenzano l'esposizione copertura del rischio di fondo. quot Mostra astratto Nascondi Abstract Abstract: Studiamo la distribuzione ad alta momento di rendimenti degli hedge fund e identificare i fattori che determinano il rischio di alta momento. Utilizzando rendimenti mensili degli hedge fund, troviamo una forte correlazione tra le prime quattro momenti di rendimenti (cioè media, la deviazione standard (SD), asimmetria e curtosi) e diverse caratteristiche dei fondi, come leva, la liquidità, gli incentivi, e strategia - fattori correlati. Troviamo che dopo il controllo per altri fattori, fattori di incentivi legati e una strategia specifica fundx27s fund hanno il maggiore impatto sulla distribuzione dei rendimenti dei fondi. La nostra evidenza suggerisce anche gli investitori assegnano attraverso le caratteristiche dei fondi hedge pur ponendo maggiore enfasi sulle strategie di fondi e fattori di incentivazione. Testo integrale dell'articolo ottobre 2016 H Kent Baker Imed Chkir Samir Saadi valore Ligang Zhong quotThe di questo portafoglio di opzioni call aumenta con l'aumento della volatilità del valore HF e le HFMs esercitare queste opzioni se, alla scadenza delle opzioni, la valore del patrimonio in gestione supera il prezzo di esercizio delle (IF) opzioni call 7. Fung e Hsieh (1997) trovano che quando la IFC è out of the money, ovvero il valore HF corrente è inferiore al prezzo di esercizio della call sottostante opzioni, vincoli contrattuali, e le preoccupazioni di reputazione possono impedire manager di rischio crescente. Sembra che, una volta che una buona reputazione è costruita, HFM tendono a conservare seguendo strategie di gestione meno rischiose. quot Mostra astratto Nascondi Abstract Abstract: Il presente documento riassume la letteratura sui fondi hedge (HFS) sviluppate nel corso degli ultimi due decenni, in particolare quella che si riferisce alle caratteristiche gestionali (pendant copre le caratteristiche di gestione del rischio di HFS). Si classifica, la letteratura corrente HF, suggerendo che i problemi critici sono stati quot quot risolti e che i problemi non sono stati ancora adeguatamente affrontate. Si discute anche gli effetti del regolamento finanziario passato e le prospettive per l'effetto della nuova regolamentazione finanziaria sul settore HF e le sue pratiche di performance e di gestione del rischio, e suggerisce nuove strade per la ricerca. Inoltre, si sottolinea l'importanza delle caratteristiche gestionali per le prestazioni HF, ed i successi e le carenze fino ad oggi nello sviluppo di più sofisticati strumenti di gestione del rischio HF-related. Classificazione JEL: G20, G23 testo integrale dell'articolo settembre 2016 Internazionale Ricerca del Alcino Azevedo Izidin El Kalak quotPositive curtosi è caratterizzato da una visiera, o distribuzione leptokurtic curtosi negativa indica una distribuzione relativamente piatta. Distribuzioni con alti livelli di curtosi sono noti come grasso dalla coda e sono non-gaussiano (Fung amp Hsieh, 1997). quot Mostra astratto Nascondi Abstract Abstract: tentativi pgtMany sono state intraprese per risolvere il puzzle premio a termine con poco o nessun successo. Il mercato valuta globale è considerato il maggior numero di informazioni efficiente e trasparente di tutti i mercati finanziari in quanto dimostra un equilibrio tra sopra e sotto-reazione alle informazioni di consistenza notevole. L'ipotesi di mercato efficiente abbraccia gli investitori non possono superare sistematicamente un punto di riferimento dal momento che tutti gli investitori hanno accesso alle stesse informazioni. Pertanto, il tasso a lungo termine di rendimento atteso per le valute è sostanzialmente pari a zero. La teoria Arbitrage Pricing afferma rendimenti degli investimenti sono casuali. Come tale, i commercianti non possono avvalersi delle valute mispriced. L'affermazione di scoperto Interest Rate Parity è che la varianza dei tassi di interesse bi-nazionale è pari al differenziale atteso dei tassi di cambio. Questo documento pone le seguenti domande: fa alpha persistenza esiste in fondi di commercio di valuta carry o sono i suoi rendimenti in eccesso semplicemente una raccolta di biasesltp comportamentale testo integrale dell'articolo agosto 2016 Ian HudsonFung e Hsieh Document (1997) - caratteristiche empiriche. Questa è la fine dell'anteprima. Iscriviti per accedere al resto del documento. Non formattato anteprima del testo: caratteristiche empiriche di strategie di trading dinamico: il caso dei fondi Hedge William Fung Paradigm, LDC David A. Hsieh Duke University Questo articolo presenta alcuni nuovi risultati su un set di dati inesplorato sulla performance dei fondi hedge. I risultati indicano che i fondi speculativi seguono strategie che sono radicalmente differenti da fondi comuni di investimento, e sostengono l'affermazione che queste strategie sono altamente dinamici. NDS articolo ve stili di investimento dominanti in hedge fund, che quando aggiunto a Sharpes (1992) asset class modello fattore in grado di fornire un quadro integrato per l'analisi di stile sia buy-and-hold e strategie di trading dinamiche. Sharpe (1992) ha proposto un modello di fattore di asset class per l'attribuzione delle prestazioni e l'analisi stile di gestori di fondi comuni di investimento. L'eleganza di Sharpes (1992) l'intuizione è stata dimostrata empiricamente, mostrando che solo un numero limitato di importanti classi di attività è stato richiesto di replicare con successo le prestazioni di un ampio universo di fondi comuni di investimento degli Stati Uniti. Sulla base di questo lavoro pionieristico, pacchetti software commerciali sono ora ampiamente disponibili per gli investitori di analizzare le loro decisioni di asset allocation e il mix di stile dei loro portafogli. Il contenuto di questo articolo è le opinioni dei soli autori e non può essere rappresentativo delle rispettive istituzioni. Gli autori sono grati a AIG Global Investors, Tass gestione, e il paradigma LDC per l'utilizzo delle loro hedge fund e banche dati della piscina CTA. Ringraziamo Max Baker, James Cui, Mark Unger, e Guy Ingram per la loro assistenza. L'articolo ha anche beneted dai commenti di Michael Bradley, Ravi Jagannathan, Pete Kyle, Harry Markowitz, S. Viswanathan, i principi di Ivy Asset Management, e un anonimo referee. Indirizzo corrispondenza e le richieste di dati a David A. Hsieh, Fuqua School of Business, Duke University, Box 90120, Durham, NC 27.708-0120. La revisione degli studi finanziaria dell'estate 1997 Vol. 10, No. 2, pp. 275.302 C 1997 Le Review of Financial Studies 0893-9454971.50 The Review of Financial Studies v 10 n 2 1997 Il successo di Sharpes (1992) l'approccio è dovuto al fatto che la maggior parte dei gestori di fondi comuni di investimento hanno mandati simile a gestori patrimoniali tradizionali con obiettivi di rendimento relativi. Essi sono in genere costretti a detenere attività in un numero ben cementato a-di classi di attività e sono spesso limitati a poco o nessun effetto leva. I loro mandati sono per soddisfare o superare i rendimenti sui loro classi di attività. Quindi sono in grado di generare rendimenti che tendono ad essere altamente correlato ai rendimenti di classes.1 patrimoniale standard di conseguenza, le differenze stilistiche tra i manager sono dovuto principalmente alle attività nei loro portafogli, che sono prontamente catturato in Sharpes (1992) regressioni di stile. In questo articolo, vi proponiamo una estensione del modello Sharpes (1992) per l'analisi di stili di gestione degli investimenti. L'obiettivo è quello di avere un quadro integrato per analizzare i gestori tradizionali con obiettivi di rendimento relativi, nonché i dirigenti alternativi con obiettivi di ritorno assoluto. Questi gestori alternativi tendono a generare rendimenti che sono meno correlati a quelli delle classi di attività standard. Di conseguenza, il (1992) modello originale Sharpe deve essere modied di cogliere le differenze stilistiche di questi gestori alternativi. In particolare ci concentriamo su gestori di hedge fund e commodity trading advisor (CTA). Questa è una classe importante di manager nella categoria dei gestori alternativi. gestori di fondi hedge e CTA in genere hanno mandati per fare un obiettivo di rendimento assoluto, indipendentemente dal environment.2 mercato Per raggiungere l'obiettivo di rendimento assoluto, si è data la flessibilità di scegliere tra molte classi di attività e di impiegare strategie di trading dinamiche che coinvolgono spesso breve vendite, leva finanziaria, e derivati. Di conseguenza, estendiamo Sharpes (1992) di asset modello fattoriale classe per accogliere le differenze tra questi manager approcci alternativi e quelli dei gestori di fondi comuni tradizionali. Il nostro lavoro si basa sulla intuizione che dirigenti rendimenti possono essere caratterizzati in generale da tre fattori determinanti: i rendimenti delle attività nei portafogli dei gestori, le loro strategie di trading, e il loro uso della leva finanziaria. Nel modello di Sharpes (1992), l'attenzione si è concentrata sul fattore determinante prima, la componente posizione di ritorno, che ci dice le categorie di attività al gestore investe. Il nostro modello si estende approccio Sharpes incorporando fattori che corrispondere alle come un manager scambia la componente di strategia di rendimento e l'utilizzo di 1 gestori di fondi comuni sono compensate in base alla quantità di attività in gestione. Dal momento che inows fondi comuni sono state andando a top-rated fondi, valutato secondo i rispettivi parametri di riferimento, i manager hanno incentivo a superare i loro punti di riferimento. 2 gestori di fondi hedge e CTA traggono una grande quantità di loro un risarcimento da commissioni di incentivo, che vengono pagati solo quando questi manager fanno un rendimento positivo. Inoltre, una funzione di high watermark nei loro contratti di incentivazione impone loro di recuperare tutte le perdite precedenti prima di una commissione di incentivo viene pagato. Così questi gestori alternativi sono chiamati gestori di rendimento assoluto. 276 caratteristiche empiriche di strategie di trading dinamico sfruttare la componente quantità di ritorno. L'aggiunta di nuovi fattori di Sharpes (1992) modello ci permette di ospitare i manager che impiegano dinamici, strategie di trading leveraged. Sono questi i fattori aggiuntivi che forniscono informazioni sulla differenza strategica tra rendimento relativo rispetto a stili di investimento rendimento assoluto. Proprio come il modello Sharpes permette di comprendere la decisione asset mix, quando solo gli stili di ritorno relativi sono considerate, il modello esteso fornisce un quadro per analizzare la decisione asset mix con un obiettivo di rendimento assoluto. Applichiamo il nostro modello di 3.327 fondi comuni statunitensi da Morningstar e 409 piscine fundsCTA di copertura da un database unico che non è mai stato analizzato finora. Come in Sharpe (1992), noi scopriamo che i rendimenti dei fondi comuni sono altamente correlati con le classi di attività standard. Al contrario, noi scopriamo che i gestori di fondi hedge e CTA generano rendimenti che hanno una bassa correlazione con i rendimenti dei fondi comuni e classi di attività standard. Inoltre, vi è una grande quantità di diversità prestazioni all'interno di fondi hedge e piscine CTA. Per catturare questo effetto, vi proponiamo tre fattori di stile aggiuntivi per Sharpes (1992) modello. Questo migliora le prestazioni dei modelli signicantly. L'articolo è organizzato come segue. Nella sezione 1 si comincia con una classe del modello fattore di otto bene simile a Sharpes (1992). Noi chiamiamo questi fattori bene o di luogo. Gli aggiornamenti di Sharpes (1992) risultati per i fondi comuni statunitensi sono nella sezione 2. I risultati mostrano che il modello lineare di otto fattore fornisce stime soddisfacenti di asset mix per un campione molto più ampia di gestori di fondi comuni, con modications solo lievi. Nella sezione 3 applichiamo Sharpes regressioni stile di coprire i rendimenti dei fondi e piscina CTA. Sezione 4 discute la differenza tra la posizione scelta e strategia di trading. Sezione 5 riguarda gli stili comuni in fondi hedge e piscine CTA. Sezione 6 commenti sui temi della valutazione delle prestazioni e pregiudizi sopravvivenza. Sezione 7 affronta le implicazioni dei nostri reperti e fornisce alcune osservazioni conclusive. 1. Un Asset Class Factor Model Iniziamo con il rendimento di un portafoglio di attività nel periodo t: Rt xj t rj t. (1) j dove xj t è il peso sulle attività j nel periodo t (da t 1 a t), e RJ t è il ritorno sugli asset j nel periodo t, j 0. J. e j indica l'operatore sommatoria su tutto valori di j. Per comodità, la j 0 attività è la finanziaria priva di rischio. Per ipotesi, l'indebitamento e 277 La Review of Financial Studies V 10 n 2 del 1997 i tassi sui prestiti sono gli stessi e sono uguali alla libera-rischio rendimento. Il numero di attività (J) si presume essere grande. Ad esempio, ci sono più di 2.000 azioni quotate sul New York Stock sola Exchange. Con il tempo includiamo azioni estere, titoli di stato, obbligazioni societarie, i mutui, materie prime, dei cambi, e così via, il numero di beni è nell'ordine delle decine di migliaia di persone. È ingombrante per lavorare con un gran numero di attività, in particolare quando molti di essi sono altamente correlati tra loro. Per ridurre il compito di un livello più gestibile, si assume che non vi è una struttura fattore per i ritorni come in una teoria standard di prezzi di arbitraggio (APT) Modello: rj t j k Fkt jt. (2) k Esistono K fattori sistematici, Fkt. k 1. K è il fattore di carico ed è il ritorno idiosincratiche. Partiamo dal presupposto che i fattori sistematici esogeno specicata e, a seguito di Sharpe (1992), interpretiamo i fattori come asset class. Utilizzando il modello fattore, siamo in grado di riscrivere i rendimenti del portafoglio come Rt wkt Fkt et. (3) k dove wkt xj t j k. j et xj t jt. j Al posto dei portafogli di ritorno essendo una media ponderata di un gran numero di rendimenti delle attività, è ora una media ponderata di un piccolo numero di classi di attività. Così Sharpes (1992) di regressione stile, Rt bk Fkt ut. (4) k funziona bene nel catturare gli stili di fondi comuni di investimento di tipo aperto, i cui rendimenti sono altamente correlati a quelli delle classi di attività standard. Sharpe (1992) chiama questo un fattore asset class model.3 In questo articolo usiamo tre classi di capitale: azioni MSCI statunitensi, MSCI non statunitensi azioni, e IFC azioni dei mercati emergenti.. Ci sono due classi di obbligazioni: obbligazioni governative statunitensi JP Morgan e titoli di stato JP Morgan non statunitensi.. 3 Sharpes scelta di classi di attività è più orientato verso i fondi degli Stati Uniti-based, mentre noi le attività di gruppo in otto clases con un accento globale. 278 caratteristiche empiriche di strategie di trading dinamica Per contante si usa il deposito eurodollar 1 mese. Per le materie prime che usiamo il prezzo dell'oro. Per le valute usiamo le riserve Federal Trade dollaro ponderato Index.4 Iniziamo aggiornando Sharpes (1992) risultati su statunitensi aperti fondi comuni di investimento su un campione più ampio. Il risultato empirico sui fondi comuni fa da sfondo contro il quale l'analisi di hedge fund e ritorna piscina CTA può essere paragonato. 2. fondo comune di investimento delle prestazioni e analisi Attribuzione stile Corriamo Sharpes regressione stile per 3.327 fondi comuni di investimento di tipo aperto nel database di Morningstar (aggiornato a dicembre 1995), che hanno almeno 36 mesi di rendimenti. Figura 1 riassume la distribuzione dei R 2 s delle regressioni. Essa mostra che 47 dei fondi comuni di investimento hanno R 2 s superiore a 75, e 92 hanno R 2 s superiore a 50. La Figura 2 fornisce la distribuzione della classe di asset (statisticamente) più signicant in queste regressioni. Ottanta-sette per cento dei fondi comuni di investimento sono correlati a due classi di attività: le azioni degli Stati Uniti e titoli di Stato degli Stati Uniti. In 99 dei fondi, i coefcients della classe di asset più signicant sono positivi, e 52 di loro sono statisticamente maggiore di zero e non statisticamente diverso da uno. Questi risultati sono molto simili a quelle del Sharpe (1992) Articolo originale. L'elevata correlazione dei rendimenti dei fondi comuni a rendimenti asset class standard, implica che la scelta del mix di stile tra i fondi comuni di investimento è simile a determinare il mix di asset in quelli portafoglio. Essa consente altresì di considerare che le prestazioni dei fondi comuni è in gran parte guidato posizione, nel senso che la strategia di fondo, data la scelta dei mercati, è simile a un acquisto e tenere. Di conseguenza, in cui essi investono, e tanto meno il modo in cui investire, è il fattore determinante della performance in fondi comuni. E 'questa natura statica di stili di fondi comuni che rende Sharpes regressione stile ben adatto per analizzare le prestazioni dei fondi comuni, e forse più in generale le prestazioni attribuzione dei gestori tradizionali con un parente stile di investimento di ritorno. L'alto livello di correlazione tra i rendimenti dei fondi comuni e classi di attività indica le strategie che gli stili di fondi comuni sono fondamentalmente buy-and-hold, utilizzando varie classi di attività. Ci sono due eccezioni. 4 Gli otto classi di attività sono diverse da quelle di Sharpe (1992). classi di attività Sharpes sono prevalentemente più verso titoli statunitensi. Egli utilizza diversi rendimenti azionari statunitensi crescita large cap, grande valore cap e small cap. Le loro differenze sono piuttosto piccole rispetto alle classi più ampi e globali di asset come l'oro, l'equità dei mercati emergenti, ecc Dal momento che queste classi di attività sono importanti per l'universo degli hedge fund, e dal momento che abbiamo bisogno di limitare il numero di classi di attività nelle nostre regressioni , abbiamo selezionato i, indici più globale più ampio. Inoltre, sono state omesse immobiliare e del capitale di rischio in quanto tali attività non sono importanti in fondi comuni, hedge fund, e CTA. 279 La Review of Financial Studies V 10 n 2 1997 Figura 1 Distribuzione di R2 contro le classi di attività Figura 2 Distribuzione della maggior parte dei fondi ad alto rendimento delle obbligazioni societarie signicant asset class e fondi obbligazionari comunali hanno una bassa correlazione con le classi di attività otto. Dato il numero di fondi obbligazionari corporate ad alto rendimento, e l'interesse in titoli distressed da investitori istituzionali, l'inserimento di un indice di obbligazioni societarie ad alto rendimento è garantito. Dato che i rendimenti delle obbligazioni municipali hanno un basso 280 caratteristiche empiriche di correlazione Trading Strategies dinamico con i governi, si può prendere in considerazione l'aggiunta di un indice obbligazionario comunale per gli investitori passivi di conto per la distinzione tra i rendimenti imponibili e esenti da tasse. 3. Attribuzione Hedge Fund performance Passiamo ora agli hedge fund e piscine CTA. Gli hedge fund sono partnershipsvehicles di investimento privato in cui il partnerentity gestione è dato un ampio mandato di investimento. Questi veicoli sono limitate a sofisticati investitori affluenti. Un CTA è un'organizzazione individuale o di negoziazione, registrata presso la Commodity Futures Trading Commission (CFTC) attraverso l'appartenenza al National Futures Association, ha concesso il potere di prendere decisioni di trading per conto di un cliente in futures, opzioni e titoli conti istituiti esclusivamente per il cliente (account gestito). Fino a quando l'avvento della vasca future diversied nel 1980, i CTA sono stati limitati da ciò che potevano commerciare (commodities, futures delle materie prime, e le opzioni future). La globalizzazione e l'espansione di tutti i mercati e la riduzione dei vincoli normativi hanno dato CTA la possibilità di scambiare un numero crescente di strumenti, come il tasso mondo di interesse, valute, azioni e mercati delle materie prime fisiche. Pertanto, mentre storicamente CTA sono stati consultati separati da gestori di hedge fund, nel corso degli ultimi 10 anni, la distinzione tra i due è diventato offuscata come CTA operare partnership di investimento privati con mandati generici in quasi tutti i mercati finanziario. In effetti, un certo numero di manager hanno entrambi i fondi hedge e piscine CTA. Ai fini del presente articolo, gli hedge fund e le piscine di CTA sono trattati come un unico gruppo di fondi, di cui semplicemente come fondi hedge. Corriamo Sharpes stile di regressione sui rendimenti di 409 fondi hedge. È opportuno commentare la portata del nostro campione. A differenza dei fondi comuni di investimento, gestori di hedge fund non sono tenuti a rivelare le loro prestazioni e del risparmio gestito pubblicamente. Futures (febbraio 1995, pp. 6264) stima che ci sono da qualche parte tra 1.000 e 2.000 fondi hedge, con 100.160 miliardi di asset in gestione alla fine di 1.994,5 Anche se questi numeri sembrano essere piccolo in confronto al settore dei fondi comuni, che ha verso l'alto di 6.000 fondi e 2 miliardi di dollari in attività, su una base leveraged le posizioni assunte da un grande hedge fund spesso superiori a quelle dei più grandi fondi comuni di investimento. 5 Barrons (20 febbraio, 1995, pp. 2326) di cui 277 fondi hedge con 29,4 miliardi di asset in gestione a partire dalla fine del 1993. Barrons (19 febbraio, 1996 MW74MW75) elencati 146 fondi hedge che hanno un minimo di 20 milioni nel risparmio gestito e un track record di 2 anni a partire dalla fine del 1995. Questi fondi hanno un totale di 25,1 miliardi di asset in gestione. 281 La Review of Financial Studies V 10 n 2 1997 Il nostro universo è costituito da circa 700 programmi dei fondi hedge e 240 piscine CTA, con un patrimonio in gestione per un totale di circa 80 miliardi. Una delle principali fonti di difculty nella costruzione di questo universo è la mancanza di storia delle prestazioni. Questa è una conseguenza naturale del fatto che la maggior parte dei fondi sono stati avviati nel 1990, e molti fondi sono attivi solo limitato per gran parte della loro esistenza. Anche molti manager hanno offerte praticamente identiche indicati con nomi diversi destinati a investitori off-shore. Inoltre, ci sono fondi di fondi, che sono portafogli di fondi hedge. Per giungere a l'universo di 940 fondi, abbiamo escluso i fondi duplicati e fondi di fondi. Tuttavia, il patrimonio dei fondi duplicati (ma non fondi di fondi) sono compresi nel 80 miliardi di asset in gestione. Il campione utilizzabile di fondi scende a 409, perché abbiamo bisogno di 3 anni di rendimenti mensili con almeno 5 milioni di risparmio gestito. Ulteriori dettagli sono forniti in Appendice. La Figura 1 riassume i risultati di regressione stile. Essi sono sorprendenti se confrontati con quelli dei fondi comuni di investimento. Mentre più della metà dei fondi comuni di investimento hanno R 2 s superiore a 75, quasi la metà (48) dei fondi hedge hanno R 2 s sotto 25. La figura 2 mostra che nessuna singola asset class è dominante nelle regressioni. Per ogni classe di attività, abbiamo separatamente riportiamo la frazione di fondi con coefcients positive (solidi barre nere) e coefcients negativi (barre bianche vuote). Unlike mutual funds, a substantial fraction (25) of hedge funds are negatively correlated with the standard asset classes. In addition, in only 17 of hedge funds are the coefcients of the most signicant asset class statistically greater than zero and not statistically different from one. The evidence indicates that hedge funds are dramatically different from mutual funds. Mutual fund returns have high and positive correlation with asset class returns, which suggests that they behave as if deploying a buy-and-hold strategy. Hedge fund returns have low and sometimes negative correlation with asset class returns. In the next section we provide an explanation for the differences between the results of hedge funds versus those of mutual funds. 4. Two Dimensions of Style: Location Choice and Trading Strategy It is well publicized that most hedge funds use many of the same liquid asset classes as mutual funds. For example, George Soross Quantum Fund was long U. S. stocks and short Japanese stocks in the October 1987 stock market crash, short the British pound in September 1992, long precious metals in April 1993 (including a 13 stake in Newmont Mining), and long the U. S. dollarshort the Japanese yen in February 282 Empirical Characteristics of Dynamic Trading Strategies 1994.6 The fact that the Quantum Funds returns have low correlation to the returns of asset classes (R 2 40) must be due to its dynamic use of leverage and choice of asset exposure. To see this, compare the style regression in Equation (4) and the denition of returns in Equation (3). The style regression can attribute a managers returns to asset classes only if his returns are correlated to the asset class returns. Sharpe is clearly aware of this problem. He refers to the style regressions as nding an average of potentially changing styles over the period covered Sharpe (1992), p. 3 by the regression. From our earlier discussions, the concept of style should be thought of in two dimensions: location choice and trading strategy. Location choice refers to the asset classes, that is, the F s in Equation (3), used by the managers to generate returns. Trading strategy refers to the direction (longshort) and quantity (leverage), that is, the ws in Equation (3), applied to the assets to generate returns. The actual returns are therefore the products of location choice and trading strategy. To illustrate this point, consider a manager trading SampP futures contracts. Without leverage, a fully invested position of being consistently long one futures contract (i. e. buy and hold) will result in the style regression showing a coefcient of one on the SampP 500 index. If the manager leverages up to two futures contract, the regression coefcient will be two. Conversely, if he is short one futures contract, the regression coefcient will be 1. However, if he alternates between long and short each month, the regression coefcient will be close to zero. In this example, the location is the U. S. stock market in all cases. The returns, on the other hand, are very different depending on the trading strategy. In the rst two cases, the returns are positively correlated with U. S. stocks. In the third case, the returns are negatively correlated with U. S. stocks. In the fourth case, the returns are uncorrelated with U. S. stocks. This example illustrates how return is a function of the location choice as well as trading strategy. With the traditional managers (i. e. mutual fund managers), their emphasis centers on where to invest. Consequently, the observed returns on average resemble a buy-andhold strategy with limited leverage. In other words, the ws generally lie between zero and one, with perhaps a modest adjustment due to stock betas. Our empirical results also indicate that time variation of the ws have limited impact on the return characteristics of the dominant styles, which are highly correlated to the asset class returns. 6 See Barrons (November 2, 1987, pp. 3536), Forbes (November 9, 1992, pp. 4042), Barrons (May 17, 1993, p. 53), and Futures (April 1994, pp. 2428). 283 The Review of Financial Studies v 10 n 2 1997 This is not so with hedge funds. Their managers trading strategies have weights (w) that are not constrained to be between zero and one. In principal, the ws can be between negative innity and positive innity. In practice, the ws are usually between 10 and 10. In addition, the managers can be opportunistic, so that the ws can and do change quickly. Their returns are not likely to be correlated to the asset class returns. These are dynamic trading strategies. This helps to explain why Sharpes style regression, which is better suited to buyand-hold returns on asset classes, is not appropriate for performance attribution when applied to hedge fund managers who use dynamic trading strategies. 5. Hedge Funds Style Analysis In principle, Sharpes style regression can be extended by adding regressors to proxy the returns of dynamic trading strategies. In practice, this is impossible to implement on monthly returns because there is a nite number of monthly returns but an innite number of dynamic trading strategies. Instead we use factor analysis to determine the dominant styles in hedge funds. L'idea è abbastanza semplice. If two managers use similar location choices and trading strategies, their returns should be correlated. Factor analysis can extract the dominant common styles, whether or not they are correlated to the asset classes. We factor analyze the 409 hedge funds as a single group and we are able to extract ve mutually orthogonal principal components, explaining approximately 43 of the cross-sectional return variance.7 Using the hedge funds most highly correlated with these principal components, we construct ve style factors whose returns are highly correlated to the principal components.8 7 We omitted funds specializing in emerging markets, since there is limited opportunity to employ dynamic trading strategies in emerging markets. Emerging markets do not have sufcient liquidity to allow managers to get in and out quickly, and many have prohibitions against short sales. Above all, available performance history is sketchy. Since our sample of hedge funds have returns over different time periods, the factor analysis was conducted on 297 funds that had returns over a common 36-month period. We standardized the returns for each fund so that they all had mean zero and variance one. This removes differences in variances caused by leverage differences. (For example, two funds empolying the exact same trading strategy but different leverage will have different return variances.) Principal components are performed on the standardized returns. The rst ve principal components explain, respectively, 11.87, 10.00, 9.42, 6.35, and 4.93 of the cross-sectional return variance. 8 We actually rotated the rst ve prinicipal components slightly to allow us to better interpret the data. The ve style factors represent investable returns on ve portfolios of hedge fund managers which closely replicate the ve rotated factors. This is done as follows. For each factor, we form a portfolio using hedge fundsCTA pools that are correlated only to that principal component. The portfolio weights are chosen so that the portfolio returns have maximal correlation with the corresponding principal component. Short sales constraints are imposed since it is not possible to sell short hedge funds and CTA pools. The correlations of the ve style factors to the corresponding principal components are all above 93. We use the maximal correlation portfolio, rather than 284 Empirical Characteristics of Dynamic Trading Strategies This quantitative method of dening investment styles should be contrasted with the qualitative method used by the hedge fund industry, which is based on the trading strategies described in the disclosure documents of hedge funds. By researching the disclosure documents of the funds in each style factor, we can associate our ve style factors with some of these commonly used qualitative style categories used by the hedge fund industry to describe trading strategies: SystemsOpportunistic, GlobalMacro, Value, SystemsTrend Following, and Distressed. In the absence of generally accepted and welldened style names, we have attempted to adhere to commonly used terms to describe hedge fund styles in the investment community. We acknowledge that the terminology is imprecise. To the best of our knowledge, there has not been formal statistical analysis of these loosely dened qualitative styles, nor do we have well-established sources such as Morningstar for reference as in the case of mutual fund styles. Indeed, various industry sources frequently publish a much wider range of style classications. Often, reported returns for the same style category will differ across sources and the same manager can appear in different style categories depending on the source. Data vendors frequently regard information on hedge fund styles to be proprietary. One of the objectives of this article is to see if there are indeed style categories that are consistent with return data. We are of the view that it is what fund managers do, not what they say they do, that determines stylistic differences. However, for labeling purposes, it is helpful to generally adhere to industry conventions where possible. The term systems traders is used to describe managers who use technical trading rules. Thus SystemsTrend Following refers to traders who use technical trading rules and are mostly trend followers, while SystemsOpportunistic refers to technically driven traders who also take occasional bets on market events relying on rule-based models. GlobalMacro refers to managers who primarily trade in the most liquid markets in the world, such as currencies and government bonds, typically betting on macroeconomic events such as changes in interest rate policies and currency devaluations and relying mostly on their assessments of economic fundamentals. Value refers to traders who buy securities of companies they perceive to be undervalued based on their microanalysis of the fundamentals. Distressed refers to managers who invest in companies near, in, or recently emerged from bankruptcycorporate restructuring.9 the optimal mean-variance tracking portfolio, because the principal components and the rotated factors are based on standardized returns, while the style factor portfolios are based on the actual returns. 9 We have investigated the stationarity of these style factors by dividing the data into two subperiods. 285 The Review of Financial Studies v 10 n 2 1997 In order to determine whether the ve style factors are location choices or dynamic trading strategies, we apply Sharpes style regression on the original eight asset classes plus high yield bonds to the ve style factors. Two style factors are each correlated with a single asset class. The Value style has an R 2 of 70 against the eight asset classes plus high yield corporate bonds and is strongly correlated to U. S. equities (with a coefcient of 0.95 and a t-statistic of 7.73). This is due to the fact that most Value managers have a long bias in U. S. equities. The Distressed style has an R 2 of 56 and is strongly correlated to high yield corporate bonds (with a coefcient of 0.89 and a t-statistic of 6.06). This is not surprising, since Distressed managers and high yield corporate bond funds both invest in companies with low or no credit ratings. Furthermore, it is common practice to price unrated, unlisted securities at a spread to the traded, high yield bonds, which explains the correlation between the Distressed style and high yield corporate bonds. The two Systems style factors (SystemsOpportunistic and SystemsTrend Following) have low R 2 s (29 and 17, respectively) and are not correlated to any of the asset classes. The GlobalMacro style is difcult to interpret. It has an R 2 of 55 and is correlated with U. S. bonds (coefcient: 0.84, t-statistic: 3.47), the U. S. dollar (coefcient: 0.46, t-statistic: 2.43), and the IFC emerging market index (coefcient: 0.15, t-statistic: 2.90). The correlation to U. S. bonds and the dollar are not surprising, given highly publicized reports regarding the bond and currency trades of the GlobalMacro managers in 1993 and 1994. However, the correlation with the IFC emerging market index could conceivably be a consequence of spurious cross-correlations with other major asset classes. A problem with the regression approach is that the results are very sensitive to outliers. The fact that the GlobalMacro style is statistically correlated with three asset markets does not necessarily mean that it is using a buy-and-hold strategy in these markets. A buy-and-hold strategy generates returns that have a linear relationship with those of an asset class, while a dynamic trading strategy does not. We resort to a different technique, similar to nonparametric regressions, to distinguish between these two trading strategies. In Table 1 we divide the monthly returns of each asset class (excluding cash) into ve states or environments of the world, ranging from severe declines to sharp rallies, by sorting the monthly returns into ve quintiles. The average returns (and the associated standard errors) of that asset class, as well as those of the ve style factors, are computed in each state of the world. Basically the principal components are unaffected. However, the style factors are somewhat affected, perhaps because traders have changed styles, or perhaps because of statistical variations. 286 Empirical Characteristics of Dynamic Trading Strategies Table 1 Returns of hedge fund style factors across different market environments: January 1991December 1995 (in percent per month) Environment MeanS. D. SysOpp MeanS. D. GlobalMac MeanS. D. Value MeanS. D. SysTrend MeanS. D. Distressed MeanS. D. Environment: US Eqty 1 2.820.29 1.620.99 2 0.050.19 0.211.08 3 1.590.11 1.561.09 4 3.040.12 0.311.36 5 5.130.59 1.511.91 0.820.62 2.140.42 1.870.69 1.420.29 1.670.44 1.980.61 0.170.54 1.580.51 3.740.88 5.190.80 1.451.26 1.710.82 0.770.51 1.911.70 0.501.55 1.560.38 2.080.72 1.720.47 1.560.36 1.860.53 Environment: Non-US Equity 1 5.160.42 1.601.29 2 1.770.22 1.051.29 3 0.810.15 0.820.89 4 3.350.19 1.491.25 5 6.990.50 2.281.73 0.500.55 1.250.75 0.900.42 1.850.54 1.930.66 0.921.02 1.840.70 1.880.70 2.420.81 3.431.17 2.451.59 1.190.93 0.000.70 0.400.56 3.821.58 1.520.45 1.510.31 2.330.62 0.960.34 2.360.58 Environment: US Bond 1 0.950.18 0.070.96 2 0.210.07 0.031.04 3 0.790.05 2.071.19 4 1.360.05 0.211.37 5 2.250.16 3.721.61 0.490.66 1.420.67 1.620.49 2.020.36 1.800.57 1.111.13 1.951.10 2.311.01 1.110.73 2.310.96 1.180.70 0.140.61 2.751.75 1.080.85 2.141.59 1.000.42 2.090.64 2.260.73 1.570.25 1.900.36 Environment: Non-US Bond 1 2.890.52 0.991.26 2 0.110.11 1.090.81 3 1.050.07 0.841.34 4 2.120.11 1.961.13 5 4.520.49 3.391.61 1.610.43 0.920.78 1.140.60 1.070.67 1.630.54 1.311.12 2.540.94 0.900.91 1.370.73 2.671.17 0.771.73 1.240.29 0.270.40 0.460.88 4.401.60 1.770.50 1.720.55 2.380.76 1.620.42 1.330.20 Environment: US Dollar 1 3.330.27 3.551.61 2 1.530.10 0.691.26 3 0.340.08 0.571.04 4 1.260.16 0.681.25 5 4.480.58 1.261.18 0.810.50 0.140.81 0.950.40 2.240.59 2.290.43 1.531.14 1.851.00 1.940.73 0.980.72 2.341.22 5.581.28 0.460.79 0.750.44 1.040.49 1.471.73 1.350.20 1.560.42 1.190.43 2.630.60 2.140.66 Environment: Gold 1 4.060.45 2 1.200.11 3 0.030.08 4 1.330.20 5 4.270.38 1.270.63 1.400.22 1.200.41 0.370.88 2.150.62 2.441.10 3.521.04 0.290.62 1.351.05 1.310.82 0.741.60 1.031.57 0.440.93 0.390.95 2.001.04 0.860.35 2.610.64 1.320.33 2.170.66 1.890.36 Environment: IFC Emerging Markets 1 4.800.71 1.291.32 0.380.82 2 1.590.19 1.770.77 0.810.55 3 0.560.14 1.141.02 1.170.42 4 2.760.22 0.701.48 1.470.41 5 8.521.33 0.371.84 2.560.59 0.340.94 1.011.07 2.230.77 1.570.74 3.451.12 1.250.95 2.421.22 1.461.40 0.270.46 0.421.61 0.550.18 1.440.33 2.080.41 2.260.72 2.380.55 0.090.83 1.630.81 2.161.25 1.471.01 3.630.74 0.220.63 0.110.72 3.671.57 1.270.84 0.051.74 0.360.22 1.380.18 1.610.24 1.570.44 3.900.70 Environment: High 1 0.490.30 2 0.800.05 3 1.240.03 4 1.800.08 5 3.550.49 0.161.49 0.381.56 0.091.08 1.231.16 3.581.04 Yield Corporate Bonds 1.190.96 0.980.58 0.471.05 2.170.58 1.811.71 1.710.49 1.841.34 1.830.51 0.801.38 1.640.46 287 The Review of Financial Studies v 10 n 2 1997 If a style uses a buy-and-hold strategy in a given asset class, then its return in the ve states of the world should align with those in the asset class in a straight line. Using this method we identied that the Value style is akin to a buy-and-hold strategy in U. S. equities. The other four styles do not use buy-and-hold strategies in any of the asset classes. In particular, the Distressed style is not quite a buy-and-hold strategy in high yield corporate bonds, because its returns in states 4 and 5 for high yield corporates are out of line with those of the other states. For the same reason, the GlobalMacro style does not use buy-and-hold strategies in U. S. bonds, currencies, or emerging market equities. If a style uses a dynamic trading strategy in a given asset class, then its return should be large (positive or negative) when the underlying asset returns are at extremes (i. e. states 1 and 5). In the case of the SystemsOpportunistic style, it is most protable during rallies in U. S. bonds, non-U. S. bonds, and gold, and during declines in the U. S. dollar. The SystemsTrend Following style is most protable during rallies in non-U. S. equities and bonds, and during declines in the U. S. dollar. The GlobalMacro style is most protable during rallies in gold, the U. S. dollar, and emerging markets. The locations we have identied are consistent with the disclosure information provided by the traders. It is important to point out that this type of nonlinear, statedependent return tabulation is helpful only to infer the location of a trading style, but it is not very informative on the nature of the trading strategies employed. Based on the evidence, it is reasonable to conclude that the Value style is highly sensitive to the movements of the overall U. S. equity market. The Distressed style is also quite sensitive to the performance of the high yield corporate bond market. The other three styles are dynamic trading strategies in a variety of markets. They are not sensitive to the asset markets in the normal states (i. e. 2, 3, and 4), but can be sensitive to selective markets during extreme states. Given that we are measuring extreme or tail events, there is little hope of attaching statistical signicance. Indeed, we are making a much weaker statement. Table 1 shows that there exist nonlinear correlations between three style factors and some of the standard asset classes, which can give rise to optionlike payouts. Figures 3, 4, and 5 illustrate three of the most dramatic examples of optionlike payouts. Figure 3 shows that the SystemsTrend Following style has a return prole similar to a straddle (i. e. long a put and a call) on U. S. equities. Figure 4 shows that the SystemsOpportunistic style is like a call option on gold. Figure 5 shows that the GlobalMacro style behaves like a straddle on the U. S. dollar. 288 Empirical Characteristics of Dynamic Trading Strategies Figure 3 Systemstrend following style versus U. S. equity Figure 4 Systemsopportunistic style versus gold 289 The Review of Financial Studies v 10 n 2 1997 Figure 5 Globalmacro style versus dollar A few remarks are appropriate here. The terms Systems, Value, GlobalMacro, and Distressed are qualitative descriptors used by the hedge fund industry to describe the investment styles of hedge fund managers based on their disclosure documents. Here we are able to quantify the actual returns of these investment styles using factor analysis. It is important to remark that we are not advocating that it takes only ve style factors to completely characterize the myriad of strategies deployed by hedge fund managers. Contrary to the case of mutual funds where the statistically identied styles account for the lion share of performance variation, here the ve style factors can only account for 43 of the return variance of hedge funds. In the world of private investments, it is quite common to have a few niche arbitrageurs operating in illiquid markets where large hedge funds would nd it unsuitable given their size. Therefore the style factors represent the most popular trading strategies that can operate in asset markets with adequate depth and liquidity. Indeed, the lack of dominant style factors attests to the wealth of performance diversity available among these managers.10 10 We are aware of a number of trading strategies that are not captured by the ve dominant style factors. There are short sellers who only short equities. There are also traders who specialize in spread trading, such as (1) warrants versus stocks, (2) convertible securities versus stocks, (3) the short end versus the long end of the yield curve, (4) mortgage securities versus government securities, and (5) interbank swaps versus government securities. These are typically arbitrage 290 Empirical Characteristics of Dynamic Trading Strategies Lastly, a brief remark on what has come to be known as market neutral strategies is in order. There is a growing literature on what constitutes a market neutral strategy, its attractive characteristics and its potential pitfalls e. g. Lederman and Klein (1996). A detailed analysis of this category of trading styles, which often includes the Distressed style, is beyond the scope of this article. However, we note that return orthogonality to the traditional asset classes is a poor screening device for market neutral funds. As our example in Section 4 shows, a market timing strategy can appear to be uncorrelated to the very asset class it has directional exposure to, yet market timing strategies are generally not regarded as market neutral. A better screening criterion is to require a market neutral fund to be orthogonal to the ve hedge fund styles as well as the traditional asset classes. Our analysis shows that three hedge fund style factors (i. e. SystemsOpportunistic, SystemsTrend Following, and GlobalMacro) appear to use market timing strategies in various asset classes, so that they have directional exposure even if they are uncorrelated to the asset classes on average. Hedge funds correlated to these styles are not market neutral. In addition, two other hedge fund styles (Value and Distressed) are correlated to U. S. equity and high yield corporate bonds, respectively. Hedge funds correlated to these styles are also not market neutral. Beyond using correlation as a screening device, truly market neutral funds should not have excessive exposures to traditional asset classes in extreme moves. For example, a typical duration neutral xed income strategy may have no correlation to normal movements in interest rates, yet may have directional exposure to extreme movements see Fung and Hsieh (1996) for details. Limiting the amount of tail exposure, as is done in Table 1, is also a good device to screen for market neutral funds. 6. Insights on Performance Evaluation and Survivorship Bias for Hedge Funds Of the many differences between traditionally managed funds and hedge funds, two issues stand out: performance evaluation and survivorship bias, respectively. In this section, we contrast our ndings with the literature on these two important issues reported on mutual fund managers. In a simplistic setting, performance attribution and evaluation involve decomposing a managers returns into the part that can be replistrategies that have gained popularity over the last few years. The limited history, together with the diversity in the strategies employed, makes it less likely for their return characteristics to converge into identiable factors. 291 The Review of Financial Studies v 10 n 2 1997 cated by standard asset baskets, or market indices, and the residual that is attributed to the managers skill. The purpose of this decomposition rests on the assumption that investors are only willing to reward a manager for superior performance that cannot be easily replicated. Applying this concept to mutual funds, Jensen (1968) used a single-factor model, regressing a stock mutual funds returns (Rt ) on market returns (Rmt ) with being the constant term: Rt bRmt ut. (5) Sharpe (1992) extended this to a multiple-factor model for the general mutual fund: Rt bk Fkt ut. (6) k The slope coefcients of the regression tell us the replicating static mix of asset classes that would capture the funds performance. The constant term is used to measure the managers average ability to generate returns beyond this static mix of assets. In this decomposition, k bk Fkt was referred to as style, and ut as skill. The evidence in Figure 1, consistent with the mutual fund literature, shows that this regression works well for mutual funds, as indicated by the high R 2 values. However, this regression works very poorly for hedge funds because the R 2 values are very low. In the present context this would imply that mutual fund returns are generated primarily from static asset mix decisions, while hedge fund returns are generated primarily from skill. It is common practice to go beyond static asset class mixes in order to analyze the performance of mutual fund managers using simple trading strategies. This is achieved by further decomposing ut in Equation (5) into selectivity (which has its genesis from the equity world for describing the ability to pick stocks) and market timing (the ability to predict market direction). The identifying assumption is that selectivity consists of idiosyncratic, diversiable risks of individual stocks, while market timing consists of nondiversiable, nonlinear payouts of asset class returns based on trading strategies. Empirically the decomposition is implemented by adding proxies for market timing strategies to Equation (5). For example, Treynor and Mazuy (1966) used the square of the market return to proxy for market timing ability, while Merton and Henriksson (1981) used an option payout on the market return. Glosten and Jagannathan (1994) also provided some justication for using selected option-index portfolios as additional factors to proxy for dynamic trading strategies. The jury on the success of using a small number of proxies to pick up market timing abilities for mutual funds is still out. Jagannathan 292 Empirical Characteristics of Dynamic Trading Strategies and Korajczyk (1986) pointed out that a separation between selectivity and market timing is not in general possible when managers can follow dynamic trading strategies or use options. While this problem of identication may not be too severe in mutual funds, because managers do not use dynamic trading strategies or options extensively, it is likely to be very severe in hedge funds. Furthermore, with the exibility available to hedge fund managers, it is unclear whether the choice to bet on the currency market instead of stocks is to be interpreted as a selection decision or as a market timing decision. The only conclusive evidence we have is that the static asset mix component plays only a minor role in hedge fund performance in general. Consequently the important component of hedge fund performance is skill. In a sense, our model proposes a more detailed decomposition of the skill set to further characterize performance differences among hedge funds. A simplistic way of summarizing the difference between a manager that draws most of his return from the asset mix decision (the location decision) versus one that relies heavily on dynamic trading strategies is to think in terms of the intertemporal deltas to any given market. A manager that depends critically on the right location decision will have a slow-moving delta within a limited range (most mutual funds are limited in their use of short sales and leverage.) In contrast, a hedge fund manager can and will have deltas in orders of magnitude greater that can shift dramatically over very short intervals of time. A case in point is George Soross Quantum Fund. It is well known that Quantum gained 25.5 in September 1992 by betting on the devaluation of the British pound. Using monthly returns, the regression of Quantum against the pound has an R 2 of only 23. Using daily returns for the month of September 1992, the R 2 is only 10 The bet appeared to have been put on around September 11 and taken off around September 22. This can be seen from Figure 6, which plots Quantums daily net asset value per share versus the British poundU. S. dollar exchange rate (measured in pounds per U. S. dollar). The inability of simple statistical procedures in picking up the correlation between Quantum and the pound means that the number of proxies needed to pick up very short-term dynamic trading strategies is virtually innite. In the spirit of the present discussion, it is unclear whether this type of event return should be classied as selectivity or market timing. On the face of it, it appears to be market timing, but then why not bet on the other currencies Simply put, hedge fund returns are much harder to explain or replicate using simple trading rules. It is the recognition of these difculties that led us to add hedge fund styles to Sharpes asset class factor model. These new styles are 293 The Review of Financial Studies v 10 n 2 1997 Figure 6 Quantum net asset value versus GBPUSD exchange rate, September 1992 analogous to the market timing proxies in the mutual fund performance evaluation literature. The good news is that these new styles are uncorrelated to asset class returns. The bad news is that they are correlated with market returns during extreme moves or tail events.11 The exposure to tail events in asset markets is not diversiable, which substantially complicates risk management. Furthermore, we emphasize the limitations in using these new styles in performance attribution. The factor analysis indicates that there are many niche styles in the hedge fund universe still unaccounted for. It is conceivable that, with such a heterogeneous population, performance attribution may ultimately require in-depth due diligence on a case-by-case basis. Next we turn to the effect of survivorship bias on our empirical results. Here we need an estimate of the attrition rate in hedge funds. This turns out to be an exceedingly difcult task. Unlike mutual funds, hedge funds need not register with the Securities and Exchange Commission, nor does a hedge fund industry association exist that can document the entry and exit of funds. In short, it is almost impossible to know exactly how many funds existed as of a given point in time. Given that the population of hedge funds is unknown, there are two ways to estimate an attrition rate. The rst method takes a sample 11 Some of the more dramatic losses in the so-called market neutral funds occurred during large event moves in the asset markets. This can be attributed partially to a failure of their risk management system to cope with the abrupt increase in the correlation between their positions in the market. 294 Empirical Characteristics of Dynamic Trading Strategies of currently existing hedge funds and tracks them going forward in time. This prospective method of estimating attrition rate can only be done as a future research project. The second method to estimate the attrition rate is to go back in time to nd all funds that existed at a given point in time, say December 1994, and determine how many did not survive until a later point in time, say December 1995. This retrospective method of determining the attrition rate is appropriate in mutual funds, since the population of mutual funds on both dates is known. As the population of hedge funds at any given date is unknown, one is tempted to estimate a retrospective attrition rate by taking the funds in a database with returns in December 1994 and see how many of them dropped out by December 1995. This procedure would yield a downward bias in the attrition rate. To understand the bias of the retrospective attrition rate in a hedge fund database, one must understand the process and objectives in creating and maintaining a hedge fund database. Suppose there are N funds in the hedge fund population on December 1994 and A funds are in our database. Assume that there are no new funds coming into the population. The attrition rate is d per year. At the end of 1995, N d funds have exited the population and Ad funds have exited our database. If no funds were added into the database during 1995, the retrospective attrition rate would have been d (Ad)A. However, database vendors have an incentive to add quality funds into the database. In 1995 there are still (N A)(1 d) funds which were not in the database. Suppose B of them are added to the database, along with their past returns. At the end of 1995, there are A B funds in the database with returns in December 1994, but Ad of them had dropped out by December 1995. The retrospective attrition rate would be given by (Ad)(A B), which is a downward biased estimate of d by the factor A(A B). If we multiply the retrospective attrition rate by the adjustment factor (AB)A, we will have an unbiased estimate of the true attrition rate. Unfortunately we cannot calculate the adjustment factor (A B)A because we do not know when a given fund was added to the database. But we can obtain an upper bound for the adjustment factor. It is reasonable to assume that the sampling rate of the surviving funds in 1995 is the same as that of the original sample in 1994, that is, B(N A)(1 d) AN. This means B (N A)(1 d)(AN ). The adjustment factor, (AB)A, now becomes 1(1-AN)(1-d). As the adjustment factor is decreasing in AN and d, its maximum is two, when AN 0 and d 0. Thus doubling the retrospective attrition rate gives an upper bound of the true attrition rate. 295 The Review of Financial Studies v 10 n 2 1997 A further complication arises when new hedge funds enter the population. Unlike the mutual fund industry, in which new entrants arrive without return histories, it is common practice in the hedge fund industry to expect new funds to come with a track record accumulated either over an incubation period prior to launching the fund or from their previous trading history with a nancial institution. Typically, new funds are added to a database with a performance history. This will further bias downward the retrospective attrition rate. In estimating the retrospective attrition rate, we dene the population of hedge funds to be those that have operated for at least 3 years to avoid picking up new funds whose incubation period is typically less than 3 years. We examined 139 funds in the Paradigm database with returns in December 1994. To the best of our knowledge, at most, six funds had ceased operation by the end of 1995.12 That represents a retrospective attrition rate of 4.3 in 1 year and a maximum upper bound of 8.6 for the true attrition rate.13 This estimate of the attrition rate in hedge funds is comparable to that in mutual funds. Grinblatt and Titman (1989) found an average attrition rate of 4.3 per year between 1974 and 1984 for mutual funds. Brown et al. (1992) found the average attrition rate to be 4.8 between 1977 and 1985, ranging from 2.6 in 1985 to 8.5 in 1977. The low attrition rate in hedge funds means that survivorship bias is unlikely to affect the result that hedge fund returns are uncorrelated with those of asset classes. Even if we added back the 8.6 of hedge funds that had exited the sample, and even if their style regression R 2 s were 1.00, it would not dramatically change the distribution graphed in Figure 1. Survivorship bias is unlikely to impact the number of hedge fund styles in the factor analysis. It is conceivable that survivorship bias in funds can result in survivorship bias in our style estimates, if the funds that exited the sample had the same style and no surviving funds had that style. We were able to determine that this did not occur by examining the funds that ceased operation in 1995. Based on their returns and their disclosure documents, we determined that the exiting funds did not come from the same style. Some were systems traders, while others were niche funds that fell outside the ve dominant styles. The broader and more interesting question is to what extent survivorship biases the returns of the styles extracted from factor analysis based on a sample of surviving funds. Grinblatt and Titman (1989) 12 Four have ceased operations and the status of two more are unknown. 13 The authors are pursuing a project with Tass Management to study entry and exit in the Tass databases in conjunction with the behavior of assets under management going back a few years. Preliminary results on CTA funds indicate that the survivorship bias is similar to that in mutual funds. 296 Empirical Characteristics of Dynamic Trading Strategies found that survivorship biased upward mutual fund returns by 0.50 per year. For hedge funds, it is unclear if survivorship biases their returns upward or downward. The reason has to do with the life cycle of hedge funds when assets under management interact with performance. A small fund that has good performance attracts assets. Unlike mutual funds, hedge fund strategies have limited capacity. This means that, over any given time period, performance may well decline when a funds size gets too large. If it subsequently experiences poor performance, assets begin to ow out. In some cases the fund can return to some equilibrium level of assets under management and the fund survives. However, there will be other cases where assets shrink so much that it is no longer economical to cover the funds xed overhead and the manager closes it down and the fund exits. This can occur even if the returns during the latter stage are above the surviving funds average, but compares poorly to its peers in the same trading style. In other words, funds exiting the sample can easily have returns higher than the population average of the survivors. There are less common, but nonetheless anecdotal, examples where an exiting fund has better performance than the population average. It is frequently the case that with private investment pools like hedge funds, acceptable performing funds can go unnoticed for prolonged periods of time. After all, one would hardly expect marketing to be high on these traders list of skills. In these cases the managers can get impatient and simply close down the business and return to trade for a nancial institution. Another example is with successful funds. There are successful funds that have reached their perceived capacity and have stopped accepting new investments.14 At this stage, there is no incentive to report their performance to third parties outside of their own investor base. In other words, funds can drop out of a data vendors universe simply because they have chosen not to report their otherwise stellar performance. Other reasons unrelated to poor performance may cause a data vendor to cease reporting a funds performance. Tass Management, for example, delists a fund to avoid any liability in potential reporting errors. This can happen to funds with above average returns as well as below average returns. Ultimately one must recognize that hedge fund managers are a heterogeneous lot, thus survivorship bias needs careful interpretation. It is unclear to us that survivorship necessarily puts an upward bias on observed mean returns. More carefully conducted empirical work is needed. 14 The fact that George Soross Quantum Fund is closed to new investors and has been distributing assets to investors since 1992 illustrates our point that even large macro funds must limit their size in order to continue to turn in a good performance. 297 The Review of Financial Studies v 10 n 2 1997 7. Implications In this article we analyze investment styles using mutual fund returns from Morningstar and hedge fund returns from a dataset that has never been subjected to formal analysis. We have shown that there are 12 important investment styles buy-and-hold in nine asset classes (our eight original asset classes plus high yield corporate bonds) and three dynamic trading strategies. There are a number of implications. In terms of performance attribution and style analysis, we provide an extension to Sharpes style factor model. A style regression using these 12 variables should produce reasonably high R 2 values in at least 85 of mutual funds and perhaps 40 of hedge funds. We believe that this provides a good starting point in performance attribution and style analysis that can cope with both relative as well as absolute return managers.15 The results of our article also have implications for portfolio construction. An investor can now allocate across both location choices and trading strategies. There are, however, complications arising from the use of dynamic trading strategies that do not exist under a static buy-and-hold type of trading strategy. For the portfolio that includes dynamic trading strategies, portfolio construction and risk management are potentially more complex, depending on the investors risk preferences. Suppose an investor has quadratic preferences. Here, standard mean-variance tools are appropriate for asset allocation and risk management. We can show that the dynamic trading strategies can improve the performance of a traditional stock-bond portfolio without substantially increasing its risk. For example, a portfolio of 60 U. S. equities and 40 U. S. bonds has an annualized mean return of 11.55 and an annualized standard deviation of 7.97 between 1990 and 1995. By shifting 50 of the portfolio into the three dynamic trading strategies with equal weights, the annualized mean return increases to 15.92 and the annualized standard deviation decreases to 7.10. This is an economically significant benet. For investors with nonquadratic preferences, it is unclear whether mean-variance tools are appropriate for portfolio construction and 15 Since the three dynamic trading strategies exhibit nonlinear correlation with the eight noncash asset classes, it is picking up some of the Jensens alphas when only the buy-and-hold strategies are used. See, for example, Glosten and Jagannathan (1994). The main difference between our approach and that of Glosten and Jagannathan (1994) is that the factor analysis does not prespecify the underlying assets to which the dynamic trading strategies are related. The factor analysis could have picked up an important hedge fundCTA investment style using an asset class that is statistically independent of the eight noncash asset classes. The fact that the important hedge fund styles are either linearly or nonlinearly correlated to the eight noncash assets indicates that this is not so. We could not have known this before the factor analysis was performed. 298 Empirical Characteristics of Dynamic Trading Strategies risk management because some of the style factors involving dynamic trading strategies exhibit nonnormal distributions.16 Furthermore, they may have nonlinear correlation with those of the nine buy-and-hold styles. Portfolio construction and risk management must take into account investor preferences and the joint distribution of the 12 investment styles. The proper technique for portfolio construction when investors have nonquadratic preferences is a subject beyond the scope of this article.17 We can, however, illustrate how it may differ from the meanvariance approach. Suppose an investor is willing to give up some of the gains in a strongly rising stock market in order to reduce the downside risk in a rapidly falling one. This type of optionlike payout prole (similar to that of a portfolio insurance strategy) is generally not available from traditional managers. For example, consider Table 1 under the column SystemsOpportunistic. This particular style underperformed seven of the eight noncash asset classes during major rallies or extreme positive states. However, it delivered positive performance in the states when extreme negative outcomes were recorded in equities and bonds, which constitute the core of most institutional portfolios. An equally weighted portfolio of the three dynamic trading strategies can deliver superior performance in the states when extreme negative outcomes were recorded in the four equity and bond asset classes. Thus blending the three dynamic trading strategies to traditional managers can provide some downside protection. For example, take an investor who is highly averse to negative returns. The traditional 60 stock40 bond portfolio suffered a maximum monthly loss of 5.93 during the 19901995 period. If 50 of that portfolio is replaced by an equally weighted portfolio of the three dynamic trading strategies, the maximum monthly loss would be reduced to 2.87. For this investor, the latter portfolio would strongly dominate the traditional 60 stock40 bond portfolio. In other words, it is possible to achieve an optionlike return prole (relative to standard bench marks) with direct investment into existing hedge funds. Risk management in the presence of dynamic trading strategies is also more complex. Hedge fund managers have a great deal of 16 The ve hedge fund style factors have kurtosis of 3.22, 4.29, 2.64, 6.66, and 7.32, with a standard error of 0.63. This indicates that at least three of the ve style factors are not normally distributed. 17 In a recent article Hlawitschka (1996) extended the Levy and Markowitz (1979) article to examine the use of mean-variance models when options are present in the opportunity set. Although the results generally favor the mean variance approximation, the dataset used is limited. Given that historical returns from a wide cross section of dynamically managed portfolios were generally unavailable to these previous studies, the present dataset could provide useful input to address the question of portfolio selection with nonquadratic preferences. 299 The Review of Financial Studies v 10 n 2 1997 freedom to generate returns that are uncorrelated with those of asset classes and traditional fund managers. This style diversication comes at a cost. Care must be taken to ensure that proper infrastructure is in place to operate broad investment mandates involving a wide range of nancial instruments. Another important element of risk is that periodically the portfolio can become overly concentrated in a small number of markets. As an example, take a portfolio with exposure in three markets: U. S. equities, U. S. bonds, and non-U. S. bonds. A part of the portfolio is managed traditionally, using buy-and-hold strategies. The remainder is in hedge funds allocated in the three styles with dynamic trading strategies. Suppose a steady trend develops in the international bond markets, as was the case in 1993. The GlobalMacro traders would have been long and leveraged. The SystemsTrend Following and SystemsOpportunistic traders would have been long as well, to take advantage of the trend. By December 1993 the portfolio could have been highly concentrated in non-U. S. bonds. It would have made a lot of money in 1993. But when the world bond market declined sharply in 1994, the portfolio would have lost a lot of money. We refer to this phenomenon as diversication implosion. The intuition here is that, although style exposures are still diverse, market exposures can converge. Overall the empirical results show that style diversication can be achieved by blending the traditional relative return investment approach to the absolute return investment styles. However, there is also an implicit cost. Conceptually it is the exibility in the absolute return managers investment mandate that allows them to deliver an uncorrelated set of returns. But freedom has its price. It is important for an investor using managers with dynamic trading strategies to take extra steps to reduce the chance of diversication implosion and exposure to extreme or tail events. This calls for greater efforts in due diligence, portfolio construction, and risk monitoring. In this article we outlined some tools to extend traditional style analysis to alternative managers employing dynamic trading strategies. Hopefully this will provide an analytical framework for managing portfolios with a better diversity of styles.18 18 A diskette containing the monthly returns of the 409 hedge funds used in this study will be made available for academic research purposes for a nominal fee of 15.00 U. S. from Duke University. Please send all requests to David A. Hsieh. Each academic researcher should write, on the letterhead of hisher academic institution, a statement stating that the data will be used only for academic purposes, that the data will not be redistributed to other parties, and that the work will acknowledge The Review of Financial Studies, AIG, Tass, and Paradigm LDC for making the data available. Updates of the data, which came from Tass Management, can be purchased 300 Empirical Characteristics of Dynamic Trading Strategies Data Appendix Generally hedge funds are private investment pools structured in such a way as to minimize regulatory and tax impediments in operating the strategy. Consistent with this objective, most funds have adopted a low prole and often secretive posture. This is especially so with some of the offshore funds catering to non-U. S. domiciled investors. Not only are performance statistics not readily given out, periodic returns are only legally released via the offshore administrators, even for investors in the funds. Similarly, marketing materials are only available on a very restricted basis. This is particularly so because some of the largest fund managers have no interest in increasing the assets under management. In contrast, data on CTAs who are regulated by the CFTC are much more readily available. Unfortunately pools of capital managed by CTAs are much smaller in comparison to hedge funds. For example, one of the largest CTAs is John W. Henry amp Co. managing a little under 2 billion. In comparison, George Soross Quantum Fund controls well over 8 billion in assets. The hedge fund universe is where a much wider range of dynamic trading strategies are used, as opposed to the CTA universe which mostly consists of technical traders operating in the commodity and nancial futures markets. Consequently the more interesting set of the data is also the harder set to assemble. Our universe of hedge funds and CTA pools consists of 250 hedge funds from Paradigm LDC (with assets under management of 44.6 billion), 451 hedge funds from Tass Management (with assets under management of 27.7 billion), and 239 CTA pools from Tass Management (with assets under management of 6.7 billion). Paradigm LDC is the general partner to Paradigm LP, a Cayman Islandbased consulting rm specializing in hedge fund portfolios. Paradigms database has been assembled through information on investments made by its clients, as well as direct contacts with hedge fund managers it follows as potential investments. Tass Management is one of the few database vendors specializing in supplying data on hedge funds and CTAs. Tass obtains its data directly from fund managers. To construct the universe of funds used in this article we carefully excluded similar funds offered by the same management company. Some of these are created for regulatory reasons, while others are created because of investor demand. Most of these funds within the same family are based on similar strategies with highly correlated returns. Without ltering out such duplications, they would overweigh directly from Tass. However, Paradigm LDC will not be able to supply updates. 301 The Review of Financial Studies v 10 n 2 1997 certain style participation and bias our analysis. Excluded also are funds of funds, which invest in other hedge funds and are not central to our style analysis. From this universe we extracted funds that have at least 3 years of monthly returns and at least 5 million in assets under management. Excluding the small funds is important. Frequently CTA databases include funds that manage as little as a few hundred thousand dollars employing very high leverage with wildly volatile returns. These funds are, for all practical purposes, not viable investment targets for professional investors. As a result, the usable database has 409 funds consisting of 168 hedge funds and 89 CTA pools from Tass and 152 hedge funds from Paradigm LDC. Each fund is identied by a fund number, followed by its latest 36 monthly returns. Another point to note is that nearly all of these returns are adjusted for ex post audit changes. Frequently a funds monthly returns are revised after yearend audit. We have made all of the adjustments known to us to date. References Brown, S. J. W. Goetzmann, R. G. Ibbotson, and S. A. Ross, 1992, Survivorship Bias in Performance Studies, Review of Financial Studies, 5, 553580. Fung, W. and D. Hsieh, 1996, Global Yield Curve Risk, Journal of Fixed Income, 6, 3748. Glosten, L. and R. Jagannathan, 1994, A Contingent Claim Approach to Performance Evaluation, Journal of Empirical Finance, 1, 133160. Grinblatt, M. and S. Titman, 1989, Mutual Fund Performance: An Analysis of Quarterly Portfolio Holdings, Journal of Business, 62, 393416. Hlawitschka, W. 1996, The Empirical Nature of Taylor-Series Approximations to Expected Utility, working paper, School of Business, Faireld University forthcoming in American Economic Review. Jagannathan, R. and R. A. Korajczyk, 1986, Assessing the Market Timing Performance of Managed Portfolios, Journal of Business, 59, 217236. Jensen, M. C. 1968, The Performance of Mutual Funds in the Period 19451964, Journal of Finance, 23, 389416. Lederman, J. and R. A. Klein, 1996, Market Neutral: State of the Art Strategies for Every Market Environment, Irwin Professional Publishing, Chicago. Levy, H. and H. M. Markowitz, 1979, Approximating Expected Utility by a Function of Mean and Variance, American Economic Review, 69, 308317. Merton, R. C. and R. D. Henriksson, 1981, On Market Timing and Investment Performance II: Statistical Procedures for Evaluating Forecasting Skills, Journal of Business, 41, 867887. Sharpe, W. F. 1992, Asset Allocation: Management Style and Performance Measurement, Journal of Portfolio Management, 18, 719. Treynor, J. and K. Mazuy, 1966, Can Mutual Funds Outguess the Market Harvard Business Review, 44, 131136. 302. View Full Document This note was uploaded on 06252015 for the course FINA 410 taught by Professor Blimma during the Winter 03913 term at Concordia Canada. Click to edit the document details Share this link with a friend: Most Popular Documents for FINA 410 Introduction to Basic Options 2 Concordia Canada FINA 410 - Winter 2015 W. sn. d.-ia. uaumgaamwwm. gt C H A PE R 1 INTRODUCTION In the last 20 years deriv Introduction to Basic Options 2 Joenvaaraa Document (2012) Concordia Canada FINA 410 - Winter 2015 New Stylized facts about Hedge Funds and Database Selection Bias Juha Joenvra, Rober Joenvaaraa Document (2012) 4. Hedge Funds Concordia Canada FINA 410 - Winter 2015 Investment Analysis 4. Hedge Funds Dr. Juliane Proelss Assistant Professor of Finance
Inviato da Edward Revy il 28 febbraio 2007 - 00:52. Attivo Forex trading e la costante ricerca ci ha permesso di raccogliere le strategie e le tecniche diverse nel nostro arsenale di trading. Oggi la nostra squadra è lieta di presentare un nuovo sito web strategie di trading Forex fiera dove i commercianti possono esplorare in modo rapido e gratuitamente diverse strategie forex e imparare le tecniche di trading Perché condividiamo le nostre conoscenze siamo commercianti come gli altri e ci piace quello che facciamo. Non ci sono segreti su Forex trading, solo l'esperienza e la dedizione. Inoltre, su Internet ci sono innumerevoli venditori che offrono le loro strategie e sistemi per i commercianti pronti a pagare. saremmo sorpresi se havent ancora incontrato uno gratuito o pagato mdash la scelta è per i commercianti di fare. La nostra scelta è una raccolta gratuita. Stiamo anche andando ad aggiornare la nostra collezione ogni volta che si scopre una nuova strategia di buon Forex vi d...
Comments
Post a Comment